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We present a method for the treatment of the boundary conditions and the particle
loading in a self-consistent semi-infinite Particle-In-Cell simulation. We assume a
nonionizing, collisional plasma in contact with an electrode. The simulation is planar
and one-dimensional (1d-2v), and is driven by anrf and/or DC current source. The
particle loading is done by appropriate drifting velocity distributions, both for ions and
electrons. Limiting the simulation to the region immediately adjacent to the electrode
dramatically improves run-times and diagnostic resolution and is ideal for studying
the sheath and plasma-sheath interface independently from the rest of the plasma.
The method can be generalized easily to model cylindrical and spherical geometries,
and surface processes can also be included. The control parameters of the simulation
are the values for the current drive (Ir f , ωr f , I DC), the species temperatures in the
bulk plasmaTs, and the values of the ion fluxes0s. c© 2001 Academic Press
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1. INTRODUCTION

It is often desirable to model plasma dynamics in the vicinity of an electrode, indepen-
dently of the bulk of the plasma. This is of particular importance when attempting to model
sheath dynamics or the plasma-sheath transition through a presheath. Analytical [1–3] or
semi-analytical [4] models dealing with these problems are desirable, but at the same time
are bound to be subject to problems having to do with the assumptions used or a lack of self-
consistency. In addition, the natural presence of two seperate spatial scales in this problem
(the sheath scale being the electron Debye lengthλD, whereas the bulk plasma/presheath
scale being the ion mean free pathL) requires special treatment of the boundary layer and
poses difficulties to analytic aproaches (see discussion in [5]).
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In such cases, the Particle-In-Cell [6–10] scheme presents an interesting alternative. The
drawback, however, is that the nature of the problem requires that the boundary on the
bulk-side of the plasma is treated independently, and there is a difficulty in doing so in a
self-consistent way. More precisely, one may create a “source sheath” at the vicinity of the
boundary, which is clearly an undesirable effect (see for example [11]). For instance, a non-
Maxwellian electron energy distribution function could get distorted if the potential drop
across the source sheath1φsourcebecame comparable to the effective electron temperature
Teff. The present work addresses this problem, and a method is presented to deal with the
particle loading and the electric field on the boundary. A source sheath is present but its
magnitude is very small with a negligible effect on the simulation. The method has been
successfully used for the study of collisionless heating by a capacitive rf sheath [12] and
the simulation of a planar Langmuir probe [13]. Another solution to this problem in a
magnetized system has been presented in [14].

The outline of the paper is as follows: In Section 2 we discuss briefly the implementation
of the one ion species model. More details are given in Sections 2.1 and 2.2 concerning the
boundary conditions, particle loading, and relaxation method. In Section 3, we provide the
modifications needed to treat the multiple-ion case and finally, in Section 4, the special cases
of collisionless and/or magnetized plasmas are considered and conclusions are drawn. The
parameters chosen for the examples in this paper were taken to correspond to a capacitive
discharge. Helium and argon model gases were used and a charge-exchange model was
used for collisions assuming a constant collision frequency proportional to the pressure and
the cross sections of each of the ions. The method however, does not depend on the collision
handling and different schemes can be used trivially.

2. IMPLEMENTATION OF THE 1-ION SPECIES MODEL

Considering the case of a one ion-species isothermal plasma such that∇ p = kT∇n and
assuming that ionization is not an important process on the scales we are modeling (which
is essentially equivalent to assuming that the simulation volume is small compared to the
plasma volume), the common flux for both ions and electrons is equal to

0 = −µi De+ µeDi

µi + µe

dn

dx
= −Da

dn

dx
, (1)

whereµs = |qs|/msνms are the mobility coefficients,Ds = kTs/msνms are the diffusion
coefficient, andνms are the momentum transfer frequencies resulting from collisions of the
relevant species.Da is the ambipolar diffusion coefficient. The density profile of the species
in the absence of ionization is linear in the bulk plasma and the electric field in the bulk is
given by

E = Di − De

µi + µe

1

n

dn

dx
. (2)

2.1. Boundary Conditions and Initial Loading

From the above discussion it is clear that the constant flux is the parameter that determines
the behavior of the bulk plasma boundary. That is, having set a value for the flux and
determining somehow what the densitynb should be at the boundary, one can solve for the
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average velocity of the species at the boundaryub = 0/nb. If in addition the gradient of
the density is known at the boundary, the electric field at the boundary can be found by (2).
We will discuss later in Section 2.2 how to obtain the values of the density and its gradient.

One way to determine the flux is to pick the density at the sheath edge as a control
parameter for the simulation. Then,assumingthat the ions will arrive at the sheath edge
with an average velocity equal to the Bohm velocityuB = (kTe/mi )

1
2 [3], the flux of the

ions is determined.
In order to start the simulation, we arbitrarily assume a linear density profile. Having the

densityn(x) at any point, we load ion super-particles obtained from a warm Maxwellian
drifting at a velocityu(x) such thatn(x)u(x) = 0 = const. Enough electron super-particles
are loaded from a warm nondrifting Maxwellian to preserve quasi-neutrality. Different initial
loading schemes could be implemented accounting for example for a density drop in the
sheath region or for particles which have suffered collisions. These schemes will not be
discussed here.

2.2. Particle Loading and Relaxation Method

The loading of the particles at the boundary has to be done from particle distributions,
which are as consistent as possible with the desired physical boundary conditions. Failure
to do so leads to the creation of an artificial “source sheath” at the boundary as for example
in [11]. This happens mainly for two reasons:

• We inject in the simulation a drifted flux which essentially does not contain particles
that have recently suffered collisions, whereas the “real” ion distribution at the boundary
should contain a tail of low energy ions which have been affected by recent collisions.
This effect will persist for a length of the order the ion mean free path, after which the ion
distribution function will have relaxed (see Fig. 1).
• In the case when there is anr f component to the current drive, this should reflect on

the electron fluxes that we load in the simulation. Therefore, in that case, the loading of
electrons has to be done from drifting warm Maxwellian fluxes.

The procedure followed in a simulation step is illustrated in the flow chart in Fig. 2.
Once the simulation is started, at every step0dt/Wi ion super-particles are injected from
the boundary in the simulation region, whereWi is the number of real particles per super-
particle. The particles are obtained from a warm drifting Maxwellian flux with drift velocity
ub, such that0 = nbub. Furthermore, assuming thatωpeÀ ω À ωpi , all r f current is
carried by the electrons while the displacement current is negligible, and the loading of the
electrons is done in the following way: taking into account how much chargeQ(t) has left
or entered the simulation area from the bulk boundary (including the newly loaded ions)
at that particular step, we inject enough electron super-particles as to conserve the total
current (i.e.,(Q(t)− JDCdt − Jrf dt)/eWe super-particles). The electron super-particles
are picked from time-dependent warm drifting Maxwellian fluxes with a drift velocity
equal toud(t) = Jrf(t)/enb. In order to reduce the calculation time, the time-dependent
fluxes are stored statically in an array.

As the simulation advances in time, we average the density profile in the proximity
of the bulk boundary. At a certain time (usually several ion plasma periods), the average
density profile near the bulk vicinity is fitted by a straight line. The extrapolation of the
line to the boundary yields what the new density should be at the boundary, and again
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FIG. 1. The evolution in space of the ion velocity distribution function. Atx = 0, the ion distribution function
is composed by the super-position of the drifted Maxwellian that we inject and the ions that have been recently
suffered collisions. Further toward the electrode, the ion velocity distribution function relaxes. The positions
where the distributions were gathered were (a)x = 0.0 cm, (b)x = 0.33 cm, (c)x = 1.0 cm, (d)x = 1.3 cm and
(e) x = 1.6 cm. The potential drop across the source sheath was1φsource= 0.04 V. Conditions: Argon gas,
I = 0 A/m2, Te = 2.57 eV,Ti = 0.027 eV,nsheath' 6.251015 m 3, P = 10 mTorr.

knowing the flux we alter the loading fluxes for both ions and electrons accordingly so as to
account for the new drift velocities. Finally, the value of the electric field at the boundary is
recalculated from (2). This process continues until steady state is reached. A typical result
is shown in Fig. 3, where we plot the ion density. In that figure, a linear fit of the density
in the bulk vicinity is also shown and the vertical line indicates the point at which the
Bohm criterion is satisfied and quasi-neutrality breaks down. We can identify a bulk region
(the region where the density drops linearly), a presheath region where the density profile
departs from linearity and finally a sheath region. A small source sheath is also visible at the
boundary.

3. IMPLEMENTATION OF THE MULTIPLE ION SPECIES MODEL

When more than one ion species is to be simulated, the complexity of the problem in-
creases significantly and the analysis presented in Section 2 has to be modified. Specifically,
there does not exist a common value for the ion and electron fluxes and therefore one cannot
write equations similar to (1) and (2). In addition, although the electron density profile will
still be linear (because of the higher mobility and diffusion coefficient of the electrons in
comparison to any of the ions) the same does not necessarily happen to the ion density
profiles. Finally, the hydrodynamic Bohm criterion in the case of multiple ion species [15]
gives

∑
i

q2
i ni

mi u2
i

≥ e2ne

kTe
, (3)
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FIG. 2. Flow chart of the simulation procedure.

involving the individual densities of the ion species and therefore cannot be used directly to
provide an estimate of the values of the individual ion fluxes. It is possible to overcome this
problem by using extra equations to obtain closure. For instance, if only two ion species
are considered, one can give an estimate of the floating potential, calculate the electron
current, and then obtain one additional equation for the total ion flux from current conser-
vation. This does not invalidate the method, as the simulation will still converge to a “real”
solution of the problem for arbitrary ion fluxes, but the control that we had over the desired
values of the densities at the sheath edge in the 1-ion case is lost. Once the individual ion
fluxes are specified, the procedure we follow differs from the 1-ion case at the following
points:
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FIG. 3. The ion density profile. The solid curve corresponds to the ion density and the dashed line is a linear
fit on the bulk part of the simulation region. The vertical line indicates the point where the Bohm criterion is
satisfied and quasi-neutrality breaks (see text). The potential drop across the source sheath was1φsource= 0.04 V
Conditions: Argon gas,I = 0A/m2, Te = 2.57 eV,Ti = 0.027 eV,nsheath' 6.251015 m3, P = 10 mTorr.

1. The densities of the ions at the boundary are all obtained from a second-order poly-
nomial fit for each of the individual species. The electron density at the boundary is given
by a linear fit.

2. As we noted already, the non self-consistent character of the fluxes that we inject at
the boundary will always create a source-sheath. When more that one ion is used at low
pressure the source-sheath becomes more significant because of interaction between the ion
species. To deal with this, we sort the ion species by their collision frequency and perform
the averaging for the electrons and all the ions except for the least collisional one. When
the boundary is updated, the least collisional ion species takes its value not from a fit but
using a quasi-neutrality condition.

3. The ambipolar electric field at the boundary is evaluated by fitting the potential at the
bulk vicinity, instead of using the values of the calculated densities and density gradients.

An example of a simulation with two ions is shown in Fig. 4. Closer inspection reveals
that as we mentioned already, the electron density is linear whereas the ion densities have a

FIG. 4. Density profiles in the 2-ion case. The solid curve corresponds to the electron density and the dashed
and dotted lines to the argon and helium densities, respectively. The potential drop across the source sheath was
1φsource= 0.03 V Conditions:I = 0A/m2, Te = 2.57 eV,Ti = 0.027 eV,nsheath' 2.01015 m3, P = 50 mTorr.
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slight curvature (one being concave and the other convex as to add up giving a linear profile
in order to preserve quasineutrality). If the simulation size is increased, one of the ion
density gradients goes to zero while the other ion’s density gradient aproaches the electron
density gradient as we go far from the electrode.

4. SPECIAL CASES

So far, we have dealt with plasmas that have some finite collision frequency. For some
class of problems though, one would like to treat the plasma as completely collisionless.
In that case, our analysis still applies but with some simplifications. The plasma structure
is shown as obtained from our simulation in Fig. 5. It consists of a bulk plasma region
where the density remains constant and a sheath region. A finite presheath region for
the planar geometry cannot exist without collisions (in a cylindrical/spherical geometry, a
geometrical presheath would be present). Therefore, the ions injected to the bulk region
of the simulation have to already satisfy the Bohm criterion. The form of the IDF that is
injected from the boundary is not particularly important since the sheath structure is not very
sensitive to it. We have successfully tried Maxwellian distributions drifting at the Bohm
velocity with various temperatures and Tonks–Langmuir distributions, without noticing
significant differences. As far as the relaxation method is concerned, obviously it is not
necessary in this case since the density at the boundary remains constant. This also makes
the convergence faster.

Another possible use of the simulation scheme we propose is for the modeling of a
plasma to which a constant magnetic field is applied. The method will still work in
that case provided that the gyro-radius of the ions is large compared to the sheath di-
mensions. This could be used for instance for the modeling of the edges of fusion
reactors.

FIG. 5. Snapshots of the ion/electron density profile in the collisionless case. The solid line represents the
average ion density and the short dashed, long dashed, and dotted lines the electron density att = 0.0Tr f , t =
0.25Tr f , andt = 0.5Tr f , respectively. The source sheath potential drop is not measurable. Conditions: Helium gas
Ir f = 90 A/m2, ωr f /2π = 13.56 MHz,Te = 2.57 eV,Ti = 0.027 eV.
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5. CONCLUSIONS

We have presented a method that deals efficiently with the problems of boundary condi-
tions and particle loading in semi-infinite PIC simulations. Our method applies to problems
where ionization is not an important process in the scales assumed. The source sheath typ-
ically created in this type of simulations at the boundary is reduced in comparison with
other simulations. This is done through self-consistent matching of the boundary and par-
ticle loading. The generalization of the process to deal with other geometries than planar is
trivial, surface processes and constant magnetic fields can be included, and the completely
collisionless plasma case can also be treated.
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